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Regularity, positivity and asymptotic vanishing
of solutions of a φ-Laplacian

Waldo Arriagada and Jorge Huentutripay

Abstract

In this note we prove that solutions of a φ-Laplacian operator on the
entire space RN are locally regular (Hölder continuous), positive and
vanish at infinity. Mild restrictions are imposed on the right-hand side
of the equation. For example, we assume a Lieberman-like condition but
the hypothesis of differentiability is dropped. This is in striking contrast
with the classical case.

1 Introduction

G. Lieberman addressed in [20] the problem on the regularity of solutions
of quasilinear elliptic equations in the generic divergence form

−divA(x, u,Du) = B(x, u,Du).

The functionals A and B are governed by structural estimates which somewhat
generalize the natural conditions introduced earlier on by Ladyzhenskaya and
Ural’tseva in the 1960’s [19, 18]. Lieberman introduces a generalized Harnack’s
inequality which is subsequently employed in the study of the behavior and
regularity of the solutions of the differential equation.

The subject of this manuscript is motivated by the analysis of this kind
of differential problems in the divergence form. The topic itself belongs to a
vast program devoted to the study of the properties of the modified Laplace
operator ∆φ (or φ-Laplacian) defined by

∆φu = div

(
φ(|∇u|) ∇u

|∇u|

)
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where φ : R → R is an odd, increasing and not-necessarily differentiable
homeomorphism, see [4, 9, 10]. For example, in [3] we have treated the blow-up
rates of large solutions of such φ-Laplacians via a dynamical formulation. The
latter provides a parallel analysis between the asymptotic properties of large
solutions and the behavior of the orbits of an autonomous ordinary differential
equation.

The existence of nontrivial solutions of equations in the divergence form is
proved in [5]via a classical Lagrange rule. This result is somewhat motivated
by the ideas in [14, Theorem 3.1]. The proof of [21, Theorem 2.2] follows sim-
ilar lines but in a different, nonhomogeneous context. The local boundedness
of nontrivial solutions has been addressed in [5] as well. Our results are closely
related to the study of the asymptotic properties of particular subsequences of
eigenvalues. The characterization of these subsequences is an interesting prob-
lem which has been raised in several references in the literature and in various
settings, such as the classical p-Laplacian one and the case of nonhomogeneous
variable exponents, see [22, 23].

In this manuscript we denote by

Φ(s) =

∫ s

0

φ(t)dt (1.1)

the N -function induced by φ. (See [1] for a thorough survey on N -functions).
We assume that there exist positive constants pΦ and qΦ such that

1 < pΦ ≤
t φ(t)

Φ(t)
≤ qΦ < +∞, for t 6= 0. (1.2)

We then formulate the following eigenvalue problem

−∆φu = λ g(·)φ(u) in RN (1.3)

on a homogeneous Orlicz space, where g is a real measurable function and N ≥
2 is an integer. If additional, mild restrictions are imposed on g, we prove that
solutions of this equation are regular, positive and vanish at infinity through
an instrumental result (Theorem 3.1). The latter (which is consequence of an
extended Harnack’s inequality proved in [2]) states that the oscillation of the
solutions is locally bounded by the supremum of the function on a ball. We
stress the fact that φ need not be differentiable. (Compare our fundamental
estimates (1.2) with bounds (1.1) in [20]).

As a final remark, we mention that the results presented in these notes
generalize those of J. Fleckinger, R. Manásevich, N. Stavrakakis and F. De
Thélin [8]. In that reference the authors treat problem (1.3) in the particular
case of the p-Laplacian operator for which φ(s) = |s|p−2s, p > 1. The authors
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use a priori estimates from [24] to determine the regularity as well as the
asymptotic behavior of the solutions. Positivity of eigenfunctions is proved
via Vasquez’s Maximum Principle [25].

2 Generalities

The N -function (1.1) associated to the odd increasing homeomorphism
φ : R → R is even, strictly increasing, convex and continuous. Note that
integration of the inequality on the right in (1.2) yields for κ > 1 and t > 0
the estimate Φ(κt) ≤ κqΦΦ(t). Therefore,

φ(κt) ≤ qΦ
Φ(κt)

κt
≤ qΦκ

qΦ−1 Φ(t)

t
≤ qΦκ

qΦ−1φ(t). (2.1)

The conjugate (or complementary) N -function Φ of Φ is defined by

Φ(t) =

∫ t

0

φ−1(s) ds

where φ−1 is the inverse of φ. Young’s inequality [17] and (1.2) imply

Φ(φ(t)) ≤ tφ(t) ≤ qΦΦ(t) for all t ∈ R. (2.2)

The Sobolev conjugate N -function Φ∗ of Φ is defined via

Φ−1
∗ (t) =

∫ t

0

Φ−1(s)

s(N+1)/N
ds

where Φ−1 is the inverse of Φ|[0,∞). This definition assumes that Φ−1
∗ (1) exists

and limt→+∞Φ−1
∗ (t) = +∞.

The Sobolev conjugate exponents p∗Φ = NpΦ/(N−pΦ) and q∗Φ = NqΦ/(N−
qΦ) are well-defined provided qΦ < N. It is evident that 1 < p∗Φ ≤ q∗Φ.

Lemma 2.1. [9] Let ρ, t be nonnegative real numbers. If qΦ < N then

a) min{ρpΦ , ρqΦ}Φ(t) ≤ Φ(ρt) ≤ max{ρpΦ , ρqΦ}Φ(t);

b) min{ρp∗Φ , ρq∗Φ}Φ∗(t) ≤ Φ∗(ρt) ≤ max{ρp∗Φ , ρq∗Φ}Φ∗(t);

c) min{ρp∗Φ/(p∗Φ−1), ρq
∗
Φ/(q

∗
Φ−1)}Φ∗(t)≤Φ∗(ρt)≤max{ρp∗Φ/(p∗Φ−1), ρq

∗
Φ/(q

∗
Φ−1)}Φ∗(t).

The ∆2-condition. It is known [1] that fundamental estimates (1.2) ensure
that Φ satisfies a global ∆2-condition. This means that there exists a positive
constant C ′ such that for every t ≥ 0, Φ(2t) ≤ C ′Φ(t). By Lemma 2.5 in [9]
the hypothesis pΦ > 1 implies that the complementary N -function Φ satisfies
a ∆2-condition as well. Lemma 2.1 ensures that the Sobolev conjugate Φ∗ and
its complementary Φ∗ also satisfy a ∆2-condition provided qΦ < N.
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2.1 Orlicz-Sobolev spaces

This section is a brief survey on Orlicz and Orlicz-Sobolev spaces. We
let Ω ⊆ RN be an open domain and denote by D(Ω) the space of infinitely-
differentiable functions with compact support in Ω. We let Φ be the N -function
from the previous section, induced by the homeomorphism φ : R → R via
(1.1). The Orlicz class LΦ(Ω) is the set of (equivalence classes of) real-valued
measurable functions u such that Φ(u) ∈ L1(Ω). In general, LΦ(Ω) is not a
vector space [11]. The linear hull LΦ(Ω) of LΦ(Ω) is a vector space which is
Banach with the Luxemburg norm

‖u‖Φ,Ω = inf

{
k > 0 :

∫
Ω

Φ
(u
k

)
dx ≤ 1

}
.

The closure in LΦ(Ω) of the space of bounded measurable functions with com-
pact support in Ω is denoted by EΦ(Ω). This space is separable and Banach
with the inherited norm. In general, EΦ(Ω) ⊆ LΦ(Ω) ⊆ LΦ(Ω). However, it is
known that Φ satisfies a global ∆2-condition if and only if EΦ(Ω) = LΦ(Ω).
Theorem 8.20 in [1] guarantees that the spaces LΦ(Ω) and LΦ(Ω) are reflexive
and separable, since Φ also satisfies a ∆2-condition. From [1, 11] it follows
that one can identify the dual space of EΦ(Ω) with LΦ(Ω) and the dual space
of EΦ(Ω) with LΦ(Ω). It is also known that if u ∈ LΦ(Ω) and v ∈ LΦ(Ω), then∫

Ω

|uv| dx ≤ 2‖u‖Φ,Ω ‖v‖Φ,Ω (2.3)

which is an extension of Hölder’s inequality to Orlicz spaces.
In the case Ω = RN we define the homogeneous Orlicz space D1,Φ

o (RN ) to
be the closure of D(RN ) with respect to the norm

‖u‖ = ‖u‖Φ∗,RN + ‖∇u‖Φ,RN (2.4)

where ‖∇u‖Φ,RN =
∑N
i=1 ‖∂xiu‖Φ,RN . By [7, Theorem 3.4], if u ∈ D(RN )

then ‖u‖Φ∗,RN ≤ C (N) ‖∇u‖Φ,RN where C (N) is a positive constant. This

inequality extends to all of D1,Φ
0 (RN ) by density and then the norms

‖ · ‖D1,Φ
o (RN ) = ‖∇(·)‖Φ,RN

and (2.4) are equivalent on D1,Φ
o (RN ). Moreover, by definition of the distri-

butional derivative and by Hölder’s inequality (2.3), the set

D1,Φ(RN ) =
{
u ∈ LΦ∗(RN ) : |∇u| ∈ LΦ(RN )

}
is a Banach space with respect to the norm (2.4) and since D(RN ) ⊆ D1,Φ(RN ),

D1,Φ
o (RN ) ⊆ D1,Φ(RN ). (2.5)
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A thorough study of the properties of the homogeneous Orlicz space D1,Φ
o (RN )

has been recently published, see [4].

Orlicz-Sobolev spaces. The Orlicz-Sobolev space W 1LΦ(Ω) (respectively
W 1EΦ(Ω)) is the vector subspace of functions in LΦ(Ω) (respectively EΦ(Ω))
with first distributional derivatives in LΦ(Ω) (respectively EΦ(Ω)). These
spaces are Banach with the norm

‖u‖1,Φ,Ω = ‖u‖Φ,Ω + ‖∇u‖Φ,Ω

where ‖∇u‖Φ,Ω =
∑N
i=1 ‖∂xiu‖Φ,Ω. Usually, W 1LΦ(Ω) and W 1EΦ(Ω) are

identified with subspaces of the products ΠLΦ(Ω) and ΠEΦ(Ω), respectively.
The natural embedding of W 1EΦ(Ω) into the product proves that W 1EΦ(Ω) is
separable since EΦ(Ω) is itself separable. The space W 1LΦ(Ω) is not separable
in general. The Orlicz-Sobolev subspaces W 1

0LΦ(Ω) and W 1
0EΦ(Ω) are defined

to be the σ-closure (where σ denotes the weak-∗ topology σ(ΠLΦ,ΠEΦ)) and
the norm-closure, respectively, of the space D(Ω) in W 1LΦ(Ω) :

W 1
0LΦ(Ω) = D(Ω)

σ
and W 1

0EΦ(Ω) = D(Ω)
‖·‖1,Φ,Ω

.

The space W 1
0LΦ(Ω) is Banach for the norm inherited from W 1LΦ(Ω).

Definition 2.1. The domain Ω has the segment property if every x ∈ ∂Ω has
a neighborhood Ux and a non-zero vector yx ∈ RN such that if z ∈ Ω ∩ Ux,
then z + tyx ∈ Ω, for 0 < t < 1.

It is known [11] that if Ω has the segment property then W 1
0EΦ(Ω) =

W 1
0LΦ(Ω)∩ΠEΦ(Ω). It is evident that if Φ satisfies a ∆2-condition then D(Ω)

is dense in W 1
0LΦ(Ω) for the norm ‖ · ‖1,Φ,Ω inherited from W 1LΦ(Ω).

For further details on Orlicz and Orlicz-Sobolev spaces we refer the reader
to [1, 11, 17]. Spaces defined by variable exponents p(x), where p : Ω →
(1,+∞) is a bounded function, are treated in [22] and [23]. These articles
study the case of nonhomogeneous differential operators containing one or
more variable power-type nonlinearities. The theory there is developed in
great generality including many possible pathologies of the underlying N -
function. In addition, this variable formulation leads to the study of conditions
for removability of isolated singular points of elliptic equations in the Sobolev
space W 1, p(x)(Ω), which was first studied by Kováčik and Rákosńık [16].

2.2 The property (P).

Let Ω be an open and bounded domain in RN . Let B : Ω×W 1LΦ(Ω)→ R
be a Carathéodory function fulfilling the growth condition

|B(x, u)| ≤ aφ(|u(x)|) + b a.e. x in Ω (2.6)
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where a, b are two fixed, nonnegative real numbers. We will say that a function
u ∈W 1LΦ(Ω) satisfies the property (P) in the domain Ω if∫

Ω

φ(|∇u|) ∇u
|∇u|

· ∇θ dx =

∫
Ω

B(x, u) θ dx (P)

for all θ ∈ W 1
0LΦ(Ω). The validity of this variational formulation is justified

as follows. Since Φ satisfies a ∆2-condition, LΦ(Ω) = LΦ(Ω). Hence, bounds
(2.2) yield φ(|∇u|) ∈ LΦ(Ω) for any u ∈ W 1LΦ(Ω). Since θ ∈ W 1LΦ(Ω), by
definition we have that both θ and ∇θ belong to LΦ(Ω). Hölder’s extended
inequality (2.3) implies that the integral on the left is finite. Estimate (2.2)
also yields φ(u) ∈ LΦ(Ω). Since Ω has finite volume, bound (2.6) implies that
the right-hand side is finite as well.

Let u be a bounded and nonnegative function satisfying property (P) in
Ω. Let BR ⊂⊂ Ω denote a ball of radius 0 < R ≤ 1 and BR/2 be the ball of
radius R/2 concentric with BR. Choose any real nonnegative number L such
that b ≤ φ(L). The following average estimate is proved in [2] for any p > 0 :

sup
BR/2

u ≤M

((
−
∫
BR

up dx

)1/p

+ LR

)
(2.7)

where M = M(a, p, qΦ, N) is a positive constant and −
∫

denotes the average
(mean) integral of up on the ball BR. This bound is indeed an intermediate
result in the proof of the extended Harnack’s inequality

sup
BR/2

u ≤ N

(
inf
BR/2

u+ LR

)
(2.8)

where N = N(a, pΦ, qΦ, N) is a positive constant [2, Theorem 1.1].

3 Oscillation of solutions

In this section we study the oscillation of nontrivial and nonnegative so-
lutions of problem (1.3), see below. This result will be instrumental in the
determination of the regularity and asymptotic properties of these functions.
In the sequel, and in addition to fundamental estimates (1.2), we assume the
following hypotheses:

(H1) qΦ < N and qΦ < p∗Φ;

(H2) g ∈ Lq∗Φ/(q∗Φ−pΦ)(RN ) ∩ L∞(RN ).
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Hypothesis (H2) generalizes the natural condition g ∈ LN/p(RN ) ∩ L∞(RN )
imposed on the right-hand side of the p-Laplacian eigenvalue differential prob-
lem considered in [8]. Lemma 2.1 and hypotheses (H1) and (H2) imply the
following result.

Corollary 3.1. [5] If u ∈ LΦ∗(RN ) then g φ(u) ∈ LΦ∗
(RN ).

Therefore, if u, θ ∈ LΦ∗(RN ) then Hölder’s inequality (2.3) produces∫
RN

g(x)φ(u) θ dx < +∞.

This motivates the following definition.

Definition 3.1. A function u ∈ D1,Φ
o (RN ) is a solution of (1.3) if there exists

λ ∈ R such that∫
RN

φ(|∇u|) ∇u
|∇u|

· ∇θ dx = λ

∫
RN

g(x)φ(u) θ dx (3.1)

for all θ ∈ D1,Φ
o (RN ). The number λ is called an eigenvalue of (1.3) with

associated eigenfunction u.

Notice that (2.2) now yields Φ(φ(|∇u|)) ≤ qΦΦ(∇u) ∈ L1(RN ). Since
Φ satisfies a ∆2-condition the left-hand side is finite as well. The connec-
tion between solutions of (1.3) and functions satisfying property (P) in any
bounded subdomain Ω ⊆ RN which has the segment property is given in the
next proposition.

Proposition 3.1. Any nonnegative solution u of problem (1.3) fulfills

i) (P) in any bounded subdomain Ω ⊆ RN with the segment property;

ii) condition (2.6) with a = |λ| ‖g‖∞ and b = 0.

Proof. Let u be a nonnegative solution of (1.3). In particular, φ(|∇u|) ∈
LΦ(Ω) for any subdomain Ω ⊆ RN . Likewise, inclusion (2.5) implies u ∈
D1,Φ(RN ) and then u ∈ LΦ∗(Ω) and |∇u| ∈ LΦ(Ω) on the same domain.
Proposition 2.1 in [10] says that Φ increases essentially more slowly than Φ∗
near infinity [1, pp. 265]. Theorem 8.16 in [1] ensures that LΦ∗(Ω) is embedded
continuously in EΦ(Ω) = LΦ(Ω) (the latter equality holds since Φ satisfies a
∆2-condition) and thus u ∈W 1LΦ(Ω).

Suppose that the domain Ω has the segment property. The remark after
Definition 2.1 implies that we can approximate any given θ ∈ W 1

0LΦ(Ω) by
a sequence {θn} ∈ D(Ω) with respect to the norm inherited from W 1LΦ(Ω).
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Let θ̄n denote the extension of θn by zero outside Ω. It follows that {θ̄n} ⊆
D(RN ) ⊆ D1,Φ

o (RN ). Since θ̄n ≡ 0 in Ωc the variational formula (3.1) yields∫
Ω

φ(|∇u|) ∇u
|∇u|

· ∇θn dx = λ

∫
Ω

g(x)φ(u) θn dx for all n ∈ N.

Since Φ satisfies a ∆2-condition, estimate (2.2) produces again Φ(g(x)φ(u)) ≤
C qΦ Φ(u) ∈ L1(Ω) for a positive constant C. Hölder’s inequality enables us
to pass to the limit n → +∞ in the variational formula above and thus this
equivalence is valid with θn replaced by θ. Then the solution u satisfies prop-
erty (P) with the right-hand side B(x, u) = λ g(x)φ(u). The proof of ii) is
thus immediate.

Lemma 3.1. [6] Let τ be a non-decreasing function and ρ, β ∈ (0, 1) such
that τ(ρ r) ≤ βτ(r) + g(r), where 0 < r ≤ R and g is also non-decreasing.
Then

τ(r) ≤ 1

β

( r
R

)(1−µ) log β
log ρ

τ(R) +
g(R1−µrµ)

1− β
where µ ∈ (0, 1) and 0 < r ≤ R.

Theorem 3.1. Let u be a solution of equation (1.3) with associated eigen-
value λ. Let Br ⊆ BR be two concentric balls in Ω of radii 0 < r ≤ R ≤ 1,
respectively. Then there exists a constant γ ∈ (0, 1) such that the oscillation

osc
Br

u = sup
Br

u− inf
Br
u ≤ C

( r
R

)γ (
sup
BR

|u|+ LR

)
where C = C(λ, ‖g‖∞, pΦ, qΦ, N) > 0 and L is any positive constant such that

|λ|‖g‖∞2qΦ−1q2
Φφ(‖u‖∞,BR) ≤ φ(L).

The term ‖u‖∞,BR denotes the norm of the essential supremum (resp. maxi-
mum) of u on BR.

Proof. Define χ = χ(r) = supBr u and θ = θ(r) = infBr u. Consider the
(nonnegative) function v = u − θ(r) in Br. By Proposition 3.1, v satisfies
property (P) in Br with B(x, v) = λ g(x)φ(v + θ).

Take α, β ≥ 0 such that either α or β is strictly positive so that α+β > 0.
Hence

(α+ β)φ(α+ β) ≤ qΦΦ(α+ β) ≤ qΦ(Φ(2α) + Φ(2β))/2
≤ qΦ(αφ(2α) + βφ(2β))
≤ qΦ(α+ β)(φ(2α) + φ(2β))
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and then φ(α + β) ≤ qΦ(φ(2α) + φ(2β)). Inequality (2.1) implies φ(2α) ≤
qΦ2qΦ−1φ(α) and φ(2β) ≤ qΦ2qΦ−1φ(β). Thus

φ(α+ β) ≤ 2qΦ−1q2
Φ(φ(α) + φ(β)).

Note that if α = β = 0 then this inequality holds as well. This estimate yields

|λ g(x)φ(v + θ)| ≤ aφ(v) + b

where a = |λ|‖g‖∞2qΦ−1q2
Φ and b = |λ|‖g‖∞2qΦ−1q2

Φφ(‖u‖∞,BR). Harnack’s
inequality (2.8) implies

χ(r/2)− θ(r) = sup
Br/2

v ≤ N

(
inf
Br/2

v + Lr

)
= N

(
θ(r/2)− θ(r) + Lr

)
(3.2)

where 0 < r ≤ R, N = N(λ, ‖g‖∞, pΦ, qΦ, N) and L is any positive constant
such that b ≤ φ(L).

On the other hand, the function w = χ(r)−u satisfies property (P) in Br
with B(x,w) = −λ g(x)φ(χ− w). Hence

χ(r)− θ(r/2) = sup
Br/2

w ≤ N

(
inf
Br/2

w + Lr

)
= N

(
χ(r)− χ(r/2) + Lr

)
. (3.3)

where N = N(λ, ‖g‖∞, pΦ, qΦ, N) as well and L is the same constant above.
Taking C = max{N,N} and adding (3.2) and (3.3) produces

χ(r/2)− θ(r/2) ≤ C − 1

C + 1

(
χ(r)− θ(r)

)
+

2CLr

C + 1
.

That is,

τ(r/2) ≤ C − 1

C + 1
τ(r) +

2CLr

C + 1

where τ(r) = oscBr u = χ(r) − θ(r). Lemma 3.1 with γ = (1 − µ) log((C −
1)/(C + 1))/ log(1/2), 0 < r ≤ R and 0 < µ < 1 implies

τ(r) ≤ C + 1

C − 1

( r
R

)γ
τ(R) + CLR1−µ rµ.

Choose C = max{2(C + 1)/(C − 1), C} and γ < µ, i.e. µ near to 1. Since
τ(R) ≤ 2 supBR |u|, the result is proved.
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4 Regularity, strict positivity and vanishing at infinity

Let Ω be an open domain in RN . Recall that a function u : Ω 7→ R is
uniformly Hölder continuous with exponent 0 < γ ≤ 1 if the quantity

[u]γ,Ω = sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|γ

is finite. (Since this number is zero on constant functions, it only defines
a semi-norm). The function u is locally uniformly Hölder continuous with
exponent γ in Ω if the quantity [u]γ,Ω′ is finite for every Ω′ ⊂⊂ Ω. We denote
by C0,γ(Ω) the space of locally uniformly Hölder continuous functions with
exponent γ in Ω. If Ω is bounded this space is denoted by C0,γ(Ω). It is known
that the latter is Banach with respect to the norm

‖u‖Cγ(Ω) = [u]γ,Ω + ‖u‖∞,Ω

where ‖ · ‖∞,Ω is the norm of the essential supremum (resp. maximum) on Ω.

Lemma 4.1. [5] Let u be a solution of equation (1.3) with associated eigen-
value λ and let 0 < R ≤ 1. Then there exists a positive constant C =
C(λ, ‖g‖∞, qΦ, N) such that

‖Φ(|u|)‖L∞(BR/2) ≤
C

RNqΦ
‖Φ(|u|)‖L1(BR)

where BR/2 is the ball of radius R/2 concentric with BR.

Theorem 4.1. Let u be a solution of equation (1.3) with associated eigenvalue
λ. Let Ω be a bounded domain in RN . Then for any subdomain Ω0 ⊂⊂ Ω there
exist constants γ ∈ (0, 1) and L > 0 such that

‖u‖Cγ(Ω0) ≤ m (‖u‖L1(Ω) + L)

where m = m (λ, ‖g‖∞, γ, d, pΦ, qΦ, N) is positive and d = dist(Ω0, ∂Ω).

Proof. Let R < dist(∂Ω,Ω0)/8 and θ = qΦ/φ(1). The adherence Ω0 is compact
and then Ω0 can be covered by finitely many balls BR/4(xj) where xj ∈ Ω0 and
j = 1, . . . ,M with M = M(R, |Ω0|) a positive integer. Since BR/2(xj) ⊆ Ω,
inequality t ≤ θΦ(t) + 1 (t ≥ 0) and Lemma 4.1 imply

sup
Ω0

|u| ≤ max
j

sup
BR/4(xj)

|u| ≤ max
j

(
θC

RNqΦ
‖Φ(u)‖L1(BR/2)(xj)) + 1

)
≤ θC

RNqΦ
‖Φ(u)‖L1(Ω) + 1

where C = C(λ, ‖g‖∞, qΦ, N). Let us fix x, y ∈ Ω0. Two different cases arise.
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First case. Suppose that the absolute value r = |x − y| ≤ R. Theorem 3.1
(with 2R ≤ 1) along with Lemma 4.1 yield

osc
Br(x)

u ≤ C
( r

2R

)γ (
sup

B2R(x)

|u|+ 2LR
)

≤ C rγ
(

2−γθCR−γ−NqΦ‖Φ(u)‖L1(B4R(x)) + (2R)−γ(1 + 2LR)
)

≤ C rγ
(

2−γθCR−γ−NqΦ‖Φ(u)‖L1(Ω) + (2R)−γ(1 + 2LR)
)
.

Then
|u(x)− u(y)| ≤ osc

Br(x)
u ≤ C|x− y|γ{‖Φ(u)‖L1(Ω) + κ}

where C = C(λ, ‖g‖∞, γ, pΦ, qΦ, N,R) and κ are positive constants. The
claimed estimate thus follows.

Second case. The number r = |x− y| > R. In this case we consider a chain
of balls {BR/4(p1), . . . , BR/4(pk)}, where k ≤ M such that x ∈ BR/4(p1), y ∈
BR/4(pk) and BR/4(pj)∩BR/4(pj+1) 6= ∅ for all j = 1, . . . , k−1. The triangle
inequality and first case above imply

|u(x)− u(y)| ≤ |u(x)− u(p1)|+
k−1∑
j=1

|u(pj)− u(pj+1)|+ |u(pk)− u(y)|

≤ C
(
|x− p1|γ +

k−1∑
j=1

|pj − pj+1|γ + |pk − y|γ
)
{‖Φ(u)‖L1(Ω) + κ }

≤ C (k + 1)|x− y|γ{‖Φ(u)‖L1(Ω) + κ}
≤ C (M + 1)|x− y|γ{‖Φ(u)‖L1(Ω) + κ}

where C = C(λ, ‖g‖∞, γ, pΦ, qΦ, N,R) and κ are positive constants. The de-
sired inequality for the Hölder seminorm follows.

Let u be a solution of equation (1.3). Following [15, Corollary 11.1.2], we
choose a subdomain Ω0 ⊂⊂ Ω. Then the adherence Ω0 is compact and Ω0 can
be covered by finitely many balls Bi = BR(xi) ⊆ Ω where R < dist(∂Ω,Ω0)/4
for all i = 1, . . . , `. Let y1, y2 ∈ Ω0 such that y1 ∈ Bk and y2 ∈ Bk+m for
some m ≥ 1 and the balls are enumerated such that Bj ∩ Bj+1 6= ∅ for
j = k, . . . k + m − 1. If we apply Harnack’s inequality (2.8) on each ball
Bk, Bk+1, . . . we obtain

u(y1) ≤ supBk u ≤ N infBk u ≤ · · · ≤ Nm+1 infBk+m
u ≤ Nm+1u(y2).

Write N = N`+1. Since y1, y2 are arbitrary and m ≤ ` it follows that

sup
Ω0

u ≤ N inf
Ω0

u. (4.1)
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Theorem 4.2. Any solution u = u(x) of equation (1.3) is strictly positive
everywhere in RN and decays uniformly to zero as |x| → +∞.

Proof. Remark 4.3 in [12] applies also in unbounded domains. Hence solutions
of (1.3) are nonnegative. Consider the (closed) subset Ω∗ = {x ∈ RN : u(x) =
0}. Let us suppose that Ω∗ is non-empty. Then the boundary ∂Ω∗ is nonempty
so we can take x0 ∈ ∂Ω∗ : for any r > 0 the ball Br(x0) intersects both Ω∗

and RN\Ω∗. Then (4.1) yields

0 < sup
Br(x0)

u ≤ N inf
Br(x0)

u = 0

which is a contradiction. Thus u is strictly positive in RN .
On the other hand, if u ∈ D1,Φ

o (RN ) is a solution of (1.3) we have u ∈
LΦ∗(RN ). Lemma 2.1 implies that u ∈ Lp∗Φ(RN ) if u ≥ 1 and u ∈ Lq∗Φ(RN )
provided 0 < u < 1. Since

sup
B1/2(z)

u ≤ sup
B1/2(z)∩{u≥1}

u + sup
B1/2(z)∩{0<u<1}

u

inequality (2.7) (applied respectively with p = p∗Φ, p = q∗Φ and L = 0) implies,
up to multiplicative factor,

sup
B1/2(z)

u ≤
(∫

B1(z)

up
∗
Φ dx

)1/p∗Φ
+
(∫

B1(z)

uq
∗
Φ dx

)1/q∗Φ
→ 0 as |z| → +∞

where B1/2(z) and B1(z) are balls centered at z ∈ RN and of radii 1/2 and 1,
respectively. The theorem is proved.
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